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INTRODUCTION

This investigation is concerned with the development of a possible
technique for obtaining step wave loadings on deeply submerged structures.
This type of loading has been successfully obtained at shallow depths,
through the use of specially designed charges. For such shallow
experiments, the venting of the bubble produced by the explosion has
resulted in the alleviation of any bubble pulse effects from the charge,
thus resulting in a reasonable pressure wave simulation. For deep sub-
mergence applications however, the exploding of a charge produces a
bubble where pulsations would produce an additional loading on the model.
It is both costly and questionable whether any artificial bubble entrap-
ment mechanisms would work at these depths. Since this additional bubble
pulse loading is undesireable for the present purposes, the consideration

of some other means of avoiding the bubble became appropriate.

For several years the possibility of utilizing a pressurized cylinder
as a test device has been under consideration. The test device cylinder
would itself be submerged. Inside the cylinder, a model would be placed
and the water brought to the required at-depth pressure for the test. A
charge designed to produce a step wave would be placed in the water out-
side the test device. The shock wave from this charge would thus envelop
the test device cylinder, and produce a loading in the pressurized tank

and thus on the test model.

One of the first questions that arises is that of the form of the pressure
wave that is produced within the test device. We would of course require

a plateau-like pressure signal which would be maintained for a minimum of

e i




three transit times of the shock wave across the model. The problem to be

investigated thus becomes a question of the transparency of the test

e

device cylinder with respect to the pressure wave from the outside
explosion which envelopes it, and thus produces a pressure wave in the
é'1 internal fluid. Of prime importance is whether or not the wave in the
internal fluid can be made to maintain the plateau-like pressure signal
for three or more envelopment times of the shock wave across the test

model.

This report presents a preliminary study of this problem. It considers

the response of a submerged fluid-filled ring subjected to a transverse

step wave. The results of particular interest are the pressure signals
produced at points in the fluid in the interior of the ring. Details
of the numerical methods and the results are given in the following

sections.
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NUMERICAL METHOD

A finite difference metuod is used to study the problem of a submerged
fluid-filled ring, subjected to a transverse step wave. The basic equations

are written in polar coordinates with sign conventions as shown in Fig. 1.

y <—: TRAVELING PRESSURE PULSE

3
3 FLUID

: (INSIDE & OUT)

L FIG. | FLUID-FILLED RING SUBJECTED TO TRANSVERSE STEP

PULSE

The external fluid is represented by using the plane wave approximation. The

shell and internal fluid equations are replaced by finite difference apnroxi-
mations using central differences in space and time: thus the time integration

method is explicit and numerical stability conditions must be considered.

T IR S

Symmetry in space is taken into account so that only points in 0 < 6 < 7 are

included in the calculation.
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Ring Equations

The equations of motion for the ring are based on those in Stresses

in Shells by Wilhelm Flugge (Springer-Verlag, 1960, pp. 208-215), specialized

to the case of a ring.

1N 1
Pl v 3 " 2 36
a
2
oo _ L oM _ 1, _
Phow = - = = =2 = (Pgg = Ppp)
a~ 96

Here v and w represent the tangential and radial velocities of the shell, M
and N the moment and stress resultant, a the shell radius, p and h the shell
density and thickness, and pTE and pTI are the total external and internal

pressures. The moment and stress resultant are given by

M=K«
N =Dt + l K K
a
with
D:.—Eill_T
a-v)
and
o o Dh’
12

where v is Poisson's ratio, E is Young's modulus, ¢ is the hoop strain at
the center-line, given in incremental form by
. v
€ == (3x +
aGet W

and Kk is the curvature, given in incremental form by

. 52
K = (~—%~+ W)

L
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_ ‘h The finite difference grid for the ring is shown in Fig. 2, with all
: é{ points equally spaced in the O-direction (spacing A8). The quantities w, M,
] .
;- N, € and K are calculated at Oi = iAB for i = (0, 1,...,n) with the last
A
S point Gn = m. The tangential shell velocity, v, is calculated at midpoints,
B 6i+1/2 = (i + 1/2)A6 for i = (0, 1,...,n-1).
F @ RADIAL
O TANGENTIAL
1
w,M,N, € K
] FIG.2 FINITE DIFFERENCE GRID FOR RING
ij Let Vi+l/2 denote V(ei+l/2’ t). Let v, denote w(ei, t); similarly for
L@ Mi’ Ni, €» Ki . The finite difference form of the equations of motion is
' given by
oh v S S TN | J) Y SV Vi
i+1/2  alAf i+l i 2 i+1 i
a Af8
Phow, = -~ —l— (M, - 2M +M )
oh Wy 2.2 4l T |
a Ad
1
“a N7 (g - Ppp)

i

The first equation applies for i = (0, 1,...,n-1); the second apnlies only for

i=(Q@, 2,...,n~1). From symmetry, the appropriate form of the second equation,

for 60 = 0, is given by
Phow. = - —1 (M. - 2M.)
0 aerz 1 0
-1y = (Pry = Prpq)
a0 TE TI1'0
7
il
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(24 - 2M )
32A62 n-1 n
1
T a Nn - (pTE - PTI)n
The strain rates for i = (1, 2,...,n-1) are given

: 1

and the curvature rates by

3 Ki =73 7 Gy — 29 v )
. a“Ab
EA By symmetry, for 60 = 0,
; S 1 1
| €0 " am8 V122 Y3 %
. _ 1 _1:_
KO =5 3 (2w1 - 2w0) + > w0
a A9 a
and for 6 =7
n
Y S 1
€0 = abe Cno172) T3 Y
.1 1
= “n T T2 2 (2wn_1 - 2wn) 2V
a A8 a
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5J Internal Fluid Equations

‘ 3
s » The equations of motion in the fluid are those of an inviscid acoustic
. fluid.

L . _ 1
3 V=7 36

; = - B

ow or

Here v and w are the tangential and radial velocites of the fluid particles,

p is the fluid pressure and P is the fluid density. The fluid pressure is

4o n 2

determined by

21 30w, v
P =mpet [+ 5]

where ¢ is the fluid wave speed.

The finite difference grid for the fluid (see Fig. 3) is obtained by
drawing an even number, 2%, of constant radius lines which are equally spaced

in the r-direction. A pressure is associated with the point at r=0. The

innermost line and every other line is associated with radial velocities.
The remaining lines are associated with pressures and tangential velocities.

The distance Ar = (Ziil

) is convenient for writing the finite difference

TERE Ny ¥ oo

equations. Radial velocity lines are defined at rj+l/2 = (j+1/2) Ar for

j=1(@0, 1,...,%), pressure lines at rj = jAr for j = (0, 1,...,% ) and
tangential velocity lines at rj = jAr for j = (1, 2,...,2). Each line

(j or j+1/2) is divided into a set of equally spaced points in the 8-direction-

- L A I 0l i Ay

Radial velocities and pressures are defined at =0 and 6=7m ; tangential
velocities are defined at midpoints between the pressure points. The number

t . . . .
: of pressure points on each line is calculated to maintain arc separation

roughly equal to radial separation; that is, rjAej = Ar.
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Hence, the number of pressure points on a j-line is variable and chosen to be
3j+1 for j=(0,1,...,%). The same number of points is chosen for the next

inner (radial velocity) line.

8 PRESSURE
@ RADIAL VELOCITY
O TANGENTIAL VELOCITY

RING

" et e eneee
i=0 VW2 1 3 2 £

FIG.3 FINITE DIFFERENCE GRID FOR INTERNAL FLUID

Let pj,i denote p(rj, ei, t), let Vj,i+1/2 denote v(rj,ei+1/2, t) and

6., t). The finite difference equations for

denote w(rj+1/2, i

let W i1/2,1

the fluid are given by

: S S -
OVs i+1/2 L ® 1 P50 |

p -7, )

(pj+l,i j,i

. - -3
Wir1/2,1 T T Ar

2 (512 Vivay2,0 7 Yi-172 Yi-1/2,4

pj,i = = pe’l riAr

)

vy 4172 7 Vi,i-1/2) |
rjABi ] ,

+

The over-bar symbol (—) in the second and third equations indicates that
linear interpolation in 8 is used since radial velocities and pressures %
i

are not always defined at the same 6 values.
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™ Special forms of the third equation are needed for r=0, 6=0 and 6=7 .
‘ ;g For r=0, the average value of the divergence <V.w>O is used
- 4 g
' + +
Y20 Y 0t 00 Y Y03
V.w>, =
0 3Ar
- . 2
so that Py o= -pc <V.w>0 . By symmetry, for 5=0
. 2 (Tiv172 Yi4172,0 ~ Ty-1/2 Yi-1/2,0
P. 5= ~pc |
J’O r Ar
J
| 2v, 1/2
. + _—JA___q
) r, 0D,
! J 3]
and for O=n
. 2 U2 Yi4172,35 T Ti-1/2 Yi-1/2,34)
P. 35 = ~Pc'l A
1523 r.Ar
]
_ 2vj,3j—l/2]
r AD,
J 3]
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-4 ; Fluid-Shell Coupling

f’ The internal fluid pressure pTI is determined by using the pressures

on the j=# line nearest the ring. Since the 0 spacing for the ring is not
3 necessarily the same as that for the j={ pressures, linear interpolation

in 8 is used to calculate Pry -

The effect of the external fluid is represented by the plane wave
approximation which, for the transverse step wave traveling in the negative

x-direction, is given by

Prg = Po(l + cos®) H(t + (x-a)/c) + pcw

Here Prg is the total exterior pressure in the fluid, P0 is the pressure

jump, H(t) is the unit step function, p and c are the fluid density and wave
1 speed and w is the radial velocity of the shell. In the numerical calculations,
the unit step function is replaced by a waveform with a finite rise-time.

This modification reduces the high frequency components in the comnuted

results.

PRSP S, 1.

e ot iy
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Time Integration

The time integration method for the ring and internal flu‘d is explicit
(based on central differences) and uses a constant time step, At, which is
determined by numerical stability considerations. Appropriate initial values
of velocities and stress-type quantities (M, N and p) are assumed to be known
and the following iterative procedure is used. Accelerations (radial and

tangentiai) are calculated from spatial differences of stress-type quantities.

Let Ak denote such an acceleration at time £, = kAt. Velocities at time
ter1/2 = (k + 1/2)At, denoted by Vk+l/2 , are calculated by
Vier/2 = Vke172 Y OE A

Strain rates (or curvature rates, or fluid divergence rates) at time tk+l/2’

denoted by E are calculated from spatial differences of the new

k+1/2°

denoted by S are

velocities. Stress—-type quantities at time t

k+1° k+1°

calculated by

Sk+1 = Sk + At D Ek+1/2

where D symbolizes the appropriate constitutive relation (pressure-volume,
moment-curvature, etc.). These two calculations are performed for all points

in the fluid and on the ring.

This method does not use a pseudo-viscosity which is often used in
finite difference calculations to remove spurious, high-frequency numerical
oscillations. Consequently, nigh frequency components in the external pressure
waveform have been reduced by using a finite rise-time of 10 a/c(2¢+1) in the
unit step function. That is, 10 At3 is used where At, is defined in the next

3

section.

13
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- Numerical Stability

The shell equations are hyperbolic with respect to the tangential
f displacement and the wave speed of this motion is controlled by Cc =y E/B(l-v ) .
The effective separation is aAB. Hence the numerical stability condition

for this effect is taken as

alAb
Aty =75

vt »
2
R s’ bt eran 8,

(The shell equations are parabolic with respect to the radial displacement
but for h < 2aA8, approximately, the condition from the tangential motion
is more critical.) The plane wave approximation contains a viscous damping
term which can affect numerical stability for certain ranges of parameters.

The condition corresponding to this effect is represented by

At2 <

The fluid behavior is hyperbolic in both the radial and tangential

directions. Numerical stability for this effect is represented by

o

i Y
Bty < =

where AL is the minimum distance between points in the fluid. This

© [}
R[5
NS SV TS PSR ¥ S ¥ W AW

corresponds to the distance between the radial velocities which surround

[N T

the origin (r=0), and thus A% = a/(28+1)

The time step used in the calculation is determined by ;

o ¥l st

At = s min(Atl, Atz, At3)

where s = 1/2 has been used as a safety factor.

14
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DISCUSSION OF RESULTS

[l i The results of six calculations are contained in Appendices A, B, C, D,
’ ‘ E and F. These calculations correspond to the following six different cases
.
B. for the ring.
! Ring Material a=radius (inches) h=thickness (inches) ]
A Steel 200 2 |
B Steel 100 2
C " " 0.5
2 D Aluminum 100 3.5
1 E i " 1
F " " 0.3

All lengths are in inches, pressures are in ksi (kilo-pounds per square inch),
and time in milliseconds. Properties of the fluid (inside and out) and the

ring are taken as shown in the following tables.

Fluid ; p = density (ksf—msecz/inA) ¢ = wave speed (in/msec)

Water l 0.093 59
: = 1
' Material p/o E = Young's Yodulus (ksi) | Vv = Poisson's Ratio |
J Steel 7.8 23,900 0.28

Aluminum 2.7 10,0090 2.33

Time t=0 corresponds to first arrival of the external pressure wave at
the right side (0=0) of the ring- the external fluid pressure jump is
Po = 1 ksi. The time scale in case A is 16 msec long but is only 8 msec

long in the other five cases (due to change in radius a).

Twelve time histories are shown in each appendix as indicated in Fig. 4.




Curve Label: Meaning

P-CENTER: pressure at r = 0

P-RIGHT: pressure at r = af2, 6 = 0

P-TOP: pressure at r = a/2, 6 = 90 deg.

P-LEFT: pressure at r = a/2, 6 = 180 deg.

SRV-RIGHT: shell radial velocity at 6 = 0

SM-RIGHT: shell moment at 6 = 0

SN-RIGHT: shell stress resultant at 6 = 0

SRV-TOP: shell radial velocity at 6 = 90 deg.

STV-~TOP: shell tangential velocity at 6 = 90

SM-TOP: shell moment at 6 = 90

SN-TOP: shell stress resultant at 6 = 90

SRV~LEFT: shell radial velocity at 6 = 180 deg.
(V,W.M,N)T

FIG.4 KEY TO TIME HISTORIES IN APPENDICES

All calculations were performed with 31 points on the ring and 651 points
in the fluid (2=20) with 61 pressure points adjacent to the ring. A typical
calculation of about 500 time steps required about 60 seconds of computer

time on the CDC 6600.
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Numerical Oscillations

As noted previously, the finite difference equations do not contain
any pseudo-viscosity terms. Consequently, the calculated time histories may
contain spurious high-frequency numerical oscillations. Most of these
oscillations can be removed by making sure that the applied pressure time

history is smooth compared to the cut-off frequency of the numerical scheme.

This has been done by introducing a finite rise-time of 10 At3 into the
external pressure, as noted on pages 10 and 11. However, some time histories
show a "beat" phenomenon which appears first in SM-RIGHT (e.g. see case C,

t = 3 msec). This beat phenomenon may be the result of numerical oscillations
interacting with physical oscillations of ring-fluid system or it may be
symptomatic of a real physical effect. Since the plane wave anproximation
(PWA) is generally good only for early times (ct < 2a), this later time

phenomenon may not be important. On the other hand, the PWA is reasonable

in this problem, at long times (though possibly not at intermediate times)

since the fluid-filled ring is near neutral buoyancy. Further study will be

required to understand the beat phenomenon.

Transparency of the Ring

The primary reason for these calculations is to determine whether

%

(or to what extent) the ring is ''transparent’”. That is, does the internal

Ld 2 S W Sl

pressure time history look nearly the same as the external pressure - at

v

least for about 3.5 msec. For a sufficiently thin ring this is clearly
the case. For example in case F (h/a = 0.003) the pressure

at all four interior points is nearly constant and equal to P 1 (within

about 10 per cent). In case E (h/a = 0.01) the deviation is more noticeable

_\’)=

and in case D (h/a = 0.035) the deviation at the center is about 40 per cent

after ahout 2.5 msec. P-LEFT in case D shows that a small]l tension wave is

17




the first signal felt at that point: this is caused by the early radial

motion of the ring at O = 180 deg (see SRV-LEFT). 1In case D, ring vibrations

(primarily the ovaling mode) are so large that the pressure signal at center
is significantly altered. The best response in case D is at P-RIGHT

(r = a/2, 0=0) where the initial pressure is near p = 1 at about t =1

U8 bt LRI g T e

¥

and drops to about p = .8 at about t = 3.5 msec. After that time, the strong

T

ring vibrations are apparent and the pressure drops quickly to p = .4.

TN TR T

Comparing the 2 in. thick steel (Case B) with the 3.5 in. thick aluminum

(both of radius 100 in.), the aluminum is slightly more transparent than

R A i

the steel, as expected.

Finally, the larger radius (200 in.) 2 in. thick steel ring shows that,

CEm . e Ty PO

although P-LEFT has a significant deviation from P, = 1, P-CENTER drops

0

about 35 per cent after 3.5 msec, and P-RIGHT drops less than 20 per cent

e R L L "o Rts

after 3.5 msec. In fact, the results in case A (steel, a=200, h=2)

look surprisingly like those in case D (alum., a=100, h=3.5) except for

the longer time scales in case A (and the related differcnces in SM-RIGHT,

SM-TOP and SN-TOP) caused by the larger radius.

T N r——T ™ 4N R T gy Y e
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SUMMARY AND CONCLUSIONS

This preliminary study has thus far indicated that pressure signals of

acceptable form and duration would probably be produced in the suggested

device. It appears to us that additional numerical studies and possible

small-scale experimentation should be initiated.

Insofar as the numerical studies are concerned, we would consider the

3 .

v

following possibilities:

(1) Study the beat phenomenon to identify its source and to determine
whether it is in fact real.

B D e Dl Bl 00

(2) Consider a modal type re-calculation. This may make it considerablyv
easier to study the beat phenomena.

ooy U

(3) Consider other materials for the test vehicle, eg. rubber or
plastics.

(4) 1Initiate, in coordination with UERD, a study on charge shaping.
The object of this work would be to attempt to produce a pressure
signal in the outside fluid which would result in a more plateau-
like pressure signal in the interior fluid. Calculations would
be made with the nrepared new loadings to study this phenomena.

At the same time that the numerical studies are in progress. we strongly
recommend that UERD initiate an experimental study of this problem. Experimental
verification of the calculated transparency of the shell is required. This can
be done .~ the UERD test basin, using relatively small scale models of different

materials and dimensions.

To summarize, preliminary calculationc indicate that the idea is feasible
and should be seriously studied. The possibility of using existing structures

for the test chamber, eg. the AB-1 model, appears attractive and should also

be pursued. ye also recommend that the additional numerical studies be
implemented and that a meeting to discuss the implications of the proposed

test device be scheduled at an appropriate time.
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APPENDIX A (Case A)

RING: Steel
Radius 200 inches
Thickness = 2 inches

Curve Label: Meaning
1 P-CENTER: pressure at r = 0
3 P-RIGHT: pressure at r = af2, 0 = 0
P-TOP: pressure at r = a/2, 0 = 90 deg.
' P-LEFT: pressure at r = a/f2, 6 = 180 deg.
{ SRV-RIGHT: shell radial velocity at 6 = 0
' SM-RIGHT: shell moment at 6 = 0
SN-RIGHT: shell stress resultant at 8 = 0
SRV-TOP: shell radial velocity at 6 = 90 deg.
STV-TOP: shell tangential velocity at 8 = 90
SM-TOP : shell moment at O = 90
SN-TOP: shell stress resultant at 6 = 90 ]
SRV~LEFT: shell radial velocity at 6 = 180 deg. ;
(V.W,M,N,T

(W,M.N)R

KEY TO TIME HISTORIES IN APPENDICES
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APPENDIX B (Case B)
RING: Steel
Radius = 100 inches
Thickness = 2 inches
x
P
=
3 Curve Label: Meaning
?1 P-CENTER: pressure at r = 0
gi P-RIGHT: pressure at r = a/2, 6 = 0
3 pP-TOP: pressure at r = a/2, 8 = 90 deg.
P-LEFT: pressure at r = a/2, 8 = 180 deg.
1 SRY~RIGHT: shell radial velocity at 6 = 0
SM-RIGHT: shell moment at 6 = 0
i SN-RIGHT: shell stress resultant at 6 = 0
SRV-TOP: shell radial velocity at 6 = 90 deg.
STV-~TOP: shell tangential velocity at 8§ = 90
SM-TOP: shell moment at 6 = 90
, SN-TOP: shell stress resultant at 6 = 90
SRV-LEFT: shell radial velocity at 6 = 180 deg.
(v,w,M,N)y
WL (W'M,N)R

KEY TO TIME HISTORIES IN APPENDICES
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| APPENDIX C (Case C)

2 RING: Steel
Radius = 100 inches
Thickness = 0.5 inches
.
-
X Curve Label: Meaning
] P-CENTER: pressure at ¥ = 0
: P-RIGHT: pressure at r = af2, 6 = 0
: P-TOP: pressure at r = a/2, 0 = 90 deg.
F P-LEFT: pressure at r = a/2, 9 = 180 deg.
3 SRY-RIGHT: shell radial velocity at 6 = 0
' SM-RIGHT: shell moment at 6 = 0
- SN-RIGHT: shell stress resultant at 8 = 0
E SRV-TOP: shell radial velocity at 8 = 90 deg.
STV-TOP: shell tangential velocity at 8 = 90
SM-TOP: shell moment at § = 90
SN-TOP: shell stress resultant at 6 = 90
SRV-LEFT: shell radial velocity at © = 180 deg.

-

wL (w,M, N

a2 a [ |
A R Pr

KEY TO TIME HISTORIES IN APPENDICES
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X

APPENDIX D (Case D)

3 RING: Aluminum
'%‘ Radius = 100 inches
4 Thickness = 3.5 inches
|
Curve Label: Meaning
P-CENTER: pressure at r = 0
P-RIGHT: pressure at r = a/2, 6 = 0
P-TOP: pressure at r = a/2, 8 = 90 deg.
P-LEFT: pressure at r = a/2, 8 = 180 deg.
SRY-RIGHT: shell radial velocity at 6 = 0
SM-RIGHT: shell moment at 0 = 0
SN-RIGHT: shell stress resultant at 8 = 0
SRV-TOP: shell radial velocity at 8 = 90 deg.
STV-TOP: shell tangential velocity at 6 = 90
3 , SM-TOP: shell moment at 6 = 90
4 SN-TOP: shell stress resultant at 6 = 90
SRV-LEFT: shell radial velocity at 6 = 180 deg.
{
(v,w,M,N)p

2 s e AR -y gt

'L (w|M'N)R

| ] [ |
PR F PR

’ KEY TO TIME HISTORIES IN APPENDICES
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RING:

Curve Label:

P-CENTER:
P-RIGHT:
P-TOP:
P-LEFT:
SRY-RIGHT:
SM-RIGHT:
SN-RIGHT:
SRV-TOP:
STV-TOP:
SM-TOP:
SN-TOP:
SRV-LEFT:

KEY TO TIME HISTORIES

wp

APPENDIX E (Case E)

Aluminum

Radius = 100 inches

Thickness = 1 inch

Meaning

pressure at r = 0
pressure at r = a/2, 6 =0
pressure at r = a/2, 6 = 90 deg.
pressure at r = a/2, 6 = 180 deg.

shell radial velocity at 6 = 0

shell moment at 6 = O

shell stress resultant at B = 0
shell radial velocity at 6 = 90 deg.
shell tangential velocity at 6 = 90
shell moment at 68 = 90

shell stress resultant at 6 = 90
shell radial velocity at 6 = 180 deg.

(v,w,M,N)y

(w,M,N)g

IN APPENDICES
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r
APPENDIX F (Case F)
y RING: Aluminum
i} Radius = 100 inches
: Thickness = 0.3 inches
d
Curve Label: Meaning
P-CENTER: pressure at r = 0
P~-RIGHT: pressure at r = af2, 6 = 0
P-TOP: pressure at r = a/2, 6 = 90 deg.
P-LEFT: pressure at r = a/f2, 0 = 180 deg.
3 SRY-RIGHT: shell radial velocity at 6 = 0
g SM-RIGHT: shell moment at 6 = 0
SN-RIGHT: shell stress resultant at 6 = O
SRV-TOP: shell radial velocity at © = 90 deg.
STV-TOP: shell tangential velocity at 6 = 90
SM-TOP: shell moment at 6 = 90
SN-TOP: shell stress resultant at 6 = 90
SRV~-LEFT: shell radial velocity at 6 = 180 deg.
(v,w,M,N)¢

w (w,M,N)g

KEY TO TIME HISTORIES IN APPENDICES
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